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We give a functional integral version of the van Kampen Q-expansion method 
for the master equation. Explicit expressions are given for the generating 
functional of correlation functions. 
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1. I N T R O D U C T I O N  

We give here a version of van Kampen's f2-expansion ~ for the master 
equation using the formalism of functional integration. The method of van 
Kampen gives expansions in t/= f2-1 for the correlation functions of the 
Markov process defined by a master equation in which the transition 
probabilities have a canonical form/2) The parameter s is usually the 
volume of the system, and the physics of the expansion is discussed in 
refs. 1 and 2. Our aim here is to use functional integral techniques to give 
closed expressions for the whole formal series in powers of t/of the generat- 
ing functional of correlation functions. This is accomplished in Section 2, 
where the formalism is presented in the case of one variable using the 
methods developed in refs. 3 and 4. Closed formulas are presented for the 
time-dependent regime and for the stationary state. In Section 3 we use the 
previous results in an explicit example. Appendix A presents the calculation 
of the "free" generating functional and Appendix B generalizes the results 
of Section 2 to master equations with several variables. The expansion 
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discussed here is the analog of the usual loop expansion in power of h in 
quantum theory and q plays the role of h (see, for example, ref. 5). 

The present version of the f2-expansion has the advantage that the 
formal structure is displayed explicitly and that the terms of any order can 
be obtained in a systematic way through algebraic manipulations only 
from the basic expansion of the generating functional. 

2. F U N C T I O N A L  INTEGRAL F O R M A L I S M  A N D  THE 
Q - E X P A N S I O N  

The master equation for a variable X(t) taking discrete values is 

~P(x,  tlx', t') =y~ [w(xlx")P(x",  tlx', t') 
X"  

- w ( x "  Ix) t ' (x ,  t lX' ,  t')3 (1) 

where P is the conditional probability and W(X[ X') is the transition prob- 
ability per unit time. In many situations of physical interest it is possible 
to introduce a parameter s representing the size of the system (we shall 
refer to s9 as the volume), and the transition probability W(XI X') of the 
extensive variable X has the canonical form ~2) If(f2) is a function of f2, 
r = X - X ' ]  

W(XLX')=f(~)CO - ~ , X - X '  =f(f~)co(x',r), x'=--(2 (2) 

where x' is intensive. The parameter t /= 1/s is small and will be used as 
an espansion parameter. We allow co(x, r) to depend on t / in  the form 

co(x, r) = coo(X, r) + qcol(x, r) + qZcoz(X, r) + -.. 

An expansion in powers of t /for correlation functions (the f2-expansion of 
van Kampen) is possible when W has the canonical form (2). Using (2) 
and putting p(x, t] ..-)= P(X, tl ...), we can write Eq. (1) as ~6) (0 = O/Ox) 

rl~tP(X,t I - . . ) =  ~ q ' ~  e 'Tr~--l)co~(x,r)p(x,t[...) (3) 
s~>O r 

where we consider the intensive variable x = X/s as continuous, since s is 
very big. We assume now that x takes values in the whole real line. If X 
is initially restricted to be positive (for example, it it is a concentration of 
some chemical species), we can still consider that (3) is valid in the whole 
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real axis if we have natural boundary conditions for (1) (see ref. 2 for a 
discussion). We can write (3) as 

q~tP(X, t [ . - . ) =  ~ ~l'SP~(~la, x) p(x, t[-.-) (4) 
s>~0 

(-tl~)~a(.S3(x), s>>.O (5) ~(.0, x)= Z n! 
n~>l 

with a(~S3(x)=~r rn~Os(X, r). The conditional probability density can be 
written as 

p(x, tlx', t ' ) =  (xl U(t, t') Ix') 

with the operator U(t, t') satisfying 

B =  / i-~U(t,t')=fIU(t,t'), Z tl+'~s("~itlp, q--'O) (6) 
s>~O 

where the operator /4 acts on functions f(q), 2f(q)=qf(q),/~f(q)= 
-i(O/Oq)f(q), [2, fi] = i, and in /4 the operators/~ are on the left of the 
operators q. From (6) it is immediate to write the generating functional of 
correlation and response functions of the Markov process defined by (4) 
as  (3) 

z [ j ,  j * ]  

= f.l(o)~Q~Pexpif,]dt[PQ-ffI(P,Q)+j(t)Q(t)+j*(t)P(,)] 

x 6(Q(to) - ~o) (7) 

Here we have taken deterministic initial conditions Q(to)=~0 for the 
Markov process and 7(0) stands for prepoint discretization (we omit this 
symbol from now on since we shall only use this discretization here), which 
defines the functional integral as the limit when N ~ ~ of the multiple 
integral IN 

NI~I N+ l 
IN = fO dQ~ H 

0=~0 i = l  j = l  2 ~  

x exp ie ~ /sj -FI(_P],Q]_~)+j(tj)Q]+j*(t])Pj (8) 
j = l  g 

with AQj=Qj-Qs_~,ts=to+je, tN+x=T, and e=(T-to) / (N+l) .  
It is simple to check that Z [ O , O ] = I ,  as it must be, since 
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2[0 ,  O] = I daN+ 1 P(qN+ 1, TI '--)  = 1. The function /~(/~, Q) is obtained 
f r o m / t  by replacing/~ ~ P, ~ ~ Q. The correlation functions are given by 
(to< zj< T) 

Gm(Vl ..... Z m ) = ( q ( % ) ' ' ' q ( r m ) ) = f l  l t= l  ifj(rt)b Z [ j , j * ]  j= j* o= (9) 

In (7) we make the change of variables P(t)=qP(t), and putting 
J(t) = x/~ j(t), j*(t) = ~ J*(t), and Z[-j, j * ]  = Z[J, S*], we obtain 

z[J ,  j*  ] 

i r dt[PO _ Hi(P, Q) - r/H2(P, Q, r/) = f ~ Q  ~np  exp ~f,o 

+ x/~ JQ + ~ J*P]" 6(Q(to)- Co) (10) 

The discretized measure here is 

N+ 1 N~I 
l - [dQi  dPj 
i=~ j=~ 2rul 

All the dependence on t/ is now explicit in (10) with Hi=H(~  
H2 = Y'.s>~O t/SH(s+l)(P, Q), and 

( - ip) n 
Hs(P 'O)=i  ~ n! a~')(a)' s ) O  (11) 

n~l 

We make now in (10) the change of variables 

Q(t) = ~(t) + xf~ q(t), P(t) = fl(t) + ~ p(t) (12) 

where (Q = a(t), P =  fl(t)) are solutions of Hamilton's equations for H1, 
which are [an(q) = a~n~ 

�9 OH 1 ~ - i n 

= ~ . ' P n a . + l ( Q )  (13a) 
Q =  0P n=o 

p = OHI iP) n i ~ ( -  dan(Q) (13b) 0---~-- 
n= 1 n! dQ 

We take the solution f l ( t )=0  and ~(t) satisfying (the dot stands for 
derivative with respect to time) 

~(t) = al(~(t)), ~(to) = ~o (14) 
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which is the deterministic equation in the sense that (4) reduces when ~7 ~ 0 
to the Liouville equation GP = ~x(-a l (x) )  p. From (10) we obtain (primes 
denote derivatives) 

Z[J, J*]  = exp dt J(t) a(t) 
0 

i 
+ 2 a2(~(t)) p2 + jq + j , p  

( N ~ )  " + m - 2  o n + m H 1  P =  p,qm 
-- ~ n] m v Op" OQ m 

n + m > ~ 3  " 0 
Q=~(t) 

- H2(x/-~ P, a(t) + E q, ~/)}" 6(q(to)) (15) 

with 

NI•I 
N + I  

~q@p= dqi I-I dpj 

in the discrete version. Using the generalization of the formula 
f(q) exp(Jq)=f(O/OJ)exp(Jq), we can write 

Z [ J , J * J = e x p  dtY(t)a(t) .Kip, q] .Zo [ J , J* ]  (16a) 
0 

q = (1/i) 6/6J 

i p2 } 
+~a2(~(t)) +Jq+J*p  .6(q(to)) 

Kip, q] =exp - i  
n + m ~ 3  

• m 

s~>0 n = l  

(E)n+m 2 on+mHl(P ' Q) 

n! m! ~P" eqQ m e = o  

Q =~(t) 

[- - ix /~p( t )]n  (s+l)[~( t )+x~q( t )]} )  
n! an 

(16b) 

(16c) 
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The functional Zo[J, J*] is independent of q and can be calculated since 
it is a Gaussian functional integral. One obtains (Appendix A) 

[I7 Zo[J,J*]=ex p - i  dt'dt"J(t')D(t',t")J*(t") 
o 

-�89 (17a) 

D(t, t') = O(t- f) exp ds ai(~(s)) (17b) 

A(t,t')=O(t-t')fs dsa'~(o~(s))] 

xa2(~(r))[expf]dsa'l(~(s)) 1 

; [  ] +O(t'-t) & exp dsa'l(c~(s)) 
to 

xa2(~('c))[expff dsa'l(c~(s)) 1 (17c) 

where the step function 0( t )= 1, t > 0 ,  and 0( t )=0,  t < 0 .  From (9) we 
obtain now that due to the change of sources the correlation functions are 

Z [ J , J * ]  , = , . = o  (18) t=l i aJ('ct) 

It is simple to check from (16) and (17) that (18) gives power series in t/ 
for the correlation functions. At this point the prepoint discretization which 
we are using is necessary to define completely the formal series, since from 
(17) we can see that D(t+e, t)~D(t, t + e ) = 0 ,  e--+ +0, while A(t, t') is a 
symmetric function of (t, t') and A(t+e, t)=A(t, t+e ) ,  e ~  +0. We can 
write (16a) as 

Z[J,J*]=exp fdtJ(t)~(t) ZEJ, J*] ,  2[0 ,  0] = 1 

with 

Z[J ,  J* ]  = K 6J*' i (19) 
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In the right-hand side of (19) one has terms of the form 

6 6 

M( t )  M * ( t )  
- -  Z o [ J  , J * ]  = - iD( t ,  t) = -iO(O) 

which are undefined, but since we are in the prepoint discretization these 
terms are 

a 6 
lim 6J*(t  + g) Z~ J*]  = - i O ( - e )  = 0 

~ +o fiJ(t) 

since p( t )q ( t )  is discretized as pjqj_>(3) No problem arises with A(t, t) 
since this function is well defined at equal times. In summary, the prescrip- 
tion is that one must take D(t, t) = 0 in the calculation of Z[J ,  J* ] .  As an 
example of the calculation of (18) we can verify that when ~ = 0, s ~> 1, the 
mean value G~(t) and the cumulant 

((x(t) x(C) >> = G2(t, C ) -  a , ( t )  a,(C) 

are given by 

Gl(t)  = ( x ( t ) )  = ~(t) + -~ ds a~(c~(s)) D(t, s) A(s, s) + O(q 2) (20a) 
o 

( (x( t )  x( t ' )  >) = rlA(t, t') + O(~/2) (20b) 

where the primes denote derivatives with respect to the argument. For- 
mulas (16)-(18) give then in closed form the O-expansion of van Kampen. 

We consider now the calculation of correlation functions in the 
stationary case. The O-expansion is local in the sense that one will obtain 
a system of correlation functions for each attractor of the deterministic 
equation &(t)=al(~(t ) ) .  Let us suppose that a~(x) is as in Fig. 1. We 
see that x = # and x =/7 are local attractors of the dynamical system 

~(x 

3 

Fig. 1. Example of a deterministic equation. 
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2 = al(x(t)). If we consider the solution ~(t; ~o, to) = ~(z, ~o), z = t - t o, and 
~(t = to; ~o, to) = ~(0; ~0) = ~o, we see that for #1 < ~o < #2 (the basin of 
attraction of the equilibrium point #) one has ~(t;~o, t o ~ - ~ ) =  
~ ( ~ ,  % ) = # .  The O-expansion is completely determined by this solution 
~(t) and the stationary solution is obtained by taking the limit to ~ -Go in 
(16) and (17) [we can of course put T =  + ~  in all our formulas, since 
(18) is independent of T for z~ < T].  The stationary values of the generating 
functionals are now 

zstat[j,J*]=expl- ~ dt J(t) # 

6J*' i (21a) 

s t a t  I f  ~ Z 0 [ J , J * ] = e x p  - i  dt'dt"J(t')DStat(t'-t")J*(t") 

_1_2 f~_o~ dt' dt" J(t')ASt"t(t'-t")J(t")] (21b) 

Dstat ( t )  = O(t e a;(z)t, j s t a t ( / )  = a2(#) ea](z)lt I (21c) 
2a](#) 

and all integrals are well defined since a ] ( # ) < 0  because # is a local 
attractor. From (20) we obtain now for the time-independent mean value 
in the stationary state 

a~'(#) az(#) G l = ( x ( z ) ) s t a t = # + q  2a](#) 2 "~O(/~ 2) (22) 

We can repeat all our calculations with a solution ~l(t), ~1 = al(~l(t)), 
~l( t0)=~o,  and # 2 < ~ 0 < # 3 ;  then ~ l ( t )~ /~  when to ~ - ~  and the 
correlation functions will represent fluctuations around the deterministic 
solution ~ ( t )  instead of fluctuations around ~(t) as before. If there is only 
one attractor for the dynamical system 2=a~(x), then the results are 
global. In the case of coexistence of attractors the fluctuations that we 
determine around each of them have a meaning insofar as the escape time 
from the attractor is much bigger than the times in which we are interested. 
If this is not the case, we are in a critical region and we have to modify the 
expansion. (7) The escape times have to be determined from the global 
stationary probability Pst(q) of the process and its dominant behavior is 
exp(b/~/), b >0 ,  and the expansion is then meaningful asymptotically for 
small ~/= s The expansion is of course meaningless around an unstable 
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equilibrium point like #1 in Fig. 1 since a ] (# l )>  0 and the integrals in (21) 
diverge. 

If the original transition probability W depends explicitly on time, 
everything goes through in the same way, but now H~(P, Q, t) and 
H2(P, Q, t) in (10) will be time dependent and this dependence will appear 
in the rest of the calculation. The existence of a stationary state has to be 
examined case by case in this situation. 

In practical calculations it is convenient to reformulate our method. 
The initial equation (4) can be written (all derivatives are on the left of 
functions of x) 

# / ~ p ( x , t [ x ' , t ' ) =  Hi - iq-~x ,X +qg2 -itl-~-s p(x, t lx ' , t ' )  
(23) 

where H~ and H2 were defined after Eq. (10) and are given by 

H~(P, Q) = i~o(iP, Q) (24a) 

H2(P, Q) = i ~ ~l s 15~s(iP, Q) (24b) 
s>~ l 

We make in (23) the time-dependent change of variables x=c~(t)+ xf~q 
and putting p(q, tlq', t ' )= p(x, tlx',  t'), we obtain 

iq-~ ~(q, tlq', t') 

= [ H l ( - i ~ - - - ~ , e ( t ) + ~ q )  

+ix//~d~(t)~--~]fi(q, t lq ' , t  ') (25) 

From (25) we can write the generating functional ;~[J, J* ]  of correlation 
functions (3"6) of the process q(t) = t 1-1/2[x(t) - ~(t)] with initial condition 
q(to) = 0 as 

T 

2[J, J*] = f ~q ~p exp i [ dt[ pgl - FI(p, q, t ) + Jq + Z*p ] . 6( q( to) ) 
" t o 

(26a) 

q/q(p, q, t) = H I ( , ~  p, c~(t) + ~ q) + qH2(x/-~ p, ~(t) + x/~ q) 

- ~ ~(t) p (26b) 
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We expand now H(P, Q, t) around (0, e(t)) Ef(P, Q)lo means 
evaluate at P = 0, Q = e(t)]  

Q) o 02H'(P' Q) 1 632Hl(P, p2+ +M(p, t) (27a) 
/ t = 2  ~ p Z -~ ~-Q o P q q, 

M(p, q, t)-- ~ (xf~)~ _+_ ~ -2  O~+~HI(P, Q) pnqm 
.+m~>3 n!m! OP"OQ m o 

+ H2(x/-~ P, ~(t) + ~ q) (27b) 

and then we can write 2 in the form 

that we 

where 

2[J , J*]=K 6J*'i  

K[p, q]=exp [ - i  s dt M(p, q, t) 1 

(28) 

and Z0 are given by (16). We see then from (19) that we have 
Z[J ,  J * ]  = Z[J ,  J* ] ,  which gives the interpretation of 2 as the generating 
functional of the process q(t) in the sense that the correlation functions 
G~(zl.'. Zm) of this process have the value 

G, , (Z l - . . z , , )=(q(z l ) - . .q (Zm))=t=FI  1 1 3 s=s .=o = 7 M(z,----)) zEJ, J*] (29) 

Correlation functions Gm (z 1 "  z m) = ( X(Z 1 ) ' ' "  X(T, rn) ) of the initial process 
x(t) are related to Gm in an obvious way through x(t) = ~(t) + xf~ q(t) and 
the most convenient method is to calculate using (29). 

3. A P P L I C A T I O N S  OF T H E  F O R M A L I S M  

We shall explain in this section the most convenient way to make 
practical calculations. The basic formula is (29), and using (19), one has 

- , - -   30, 
l= 1 i aJ('~l) ~J* '  i 

We use here the generalization of the formula 

F(  1 O~Zo(J ) Zo (1 O~F(q) q 
\ a N /  ,=o = GVqJ 
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valid for any functions F(-) and Zo(.). From (30) we obtain 

[ ~ 6  1 6 ]  qJ p = q = O  Gm(Zl""zm)=Z~ 6q' i6p q(z~)'"q(rm)K[P' (31) 

We put M =  iH~(p, q, t), H, = ~ E ~ o  (x/~) ~ H7 ), since M is a formal 
power series in x/#~. Then 

f 
T 

K[p, q] = exp dt HI( p, q, t) 
tO 

=l +..f~ f~dtn~.~ + , dtH(iI)(t) 
tO to 

+ ~ dt~ dt2 H~~ H(t~ 
to 

+ 0(~,~ 3) (32) 

and each Gm will be a formal series in powers of x/-~. We remark that (16c) 
shows that the term of order (x/~) 2n+I in Kip, q] [respectively, of order 
(x/~) 2n] will contain a product P(rl) '"  "P(Zt)q(z'm)--. q(r~,) with ( l+ k) odd 
(resp. even). This implies that the expansion of G,~ for m even (resp. m 
odd) will have only even powers (x/~)2n= ~n [resp. only odd powers 
(x/~) 2"+1= x/q t/n] due to the fact that Zo[J, J*]  is the exponential of a 
quadratic form in (J, J*). Putting K =  1 + ~ 1  (x/~)n K,, one has that 
each K, will be a multiple integral where the integrand is a product of 
given functions of the time with products (P(~I) P(r2)'"q(~'l) q(r;). .-).  
Then each term in (31 ) will be of the form of a multiple integral and in the 
integrand one will have 

Z~ 6q' i (P(~l) P(Z2)'"q(~'l) q(~'2) "" o 

= {P(ZI) P(Z2)'"" q(z'l) q ( ~ ) " "  } (33) 

where (33) defines the notation {..-}. Due to the form of Z0 one has 

{p(Tl) p(T2) ) = 0 ,  {q(T1) p("C2) ) = iO(~'l ,  T2) , {q("Cl) q("c2) ) = zs "['2) 

(34) 

and {q(z)p(r)} = 0 due to the observation after Eq. (19). In order to give 
the value of the general term (33), we put z~(r)=p(r)  and zz(z)=q(r) 
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and we can easily see [-using the short-hand notation zi=z(zi)]  that 
{z1-..z2,+1} = 0  and 

{zlz2. . .z2,}=ZlZ2Z3Za.. .z2n lZ2, + (all possible groups of pairs) (35) 

where 

zu~--~zv(v' ) = {z,(z) z~(v')} = S,~(z, r') (36) 

is called a contraction and from (34) one has $11(~,~')=0, 
S12('c,'r')=iD(z','c), S21(v,r ')=iD(r,z ') ,  and S22(r ,r ' )=A(z,z ' ) .  The 
number of terms in the right-hand side of (35) is ( 2 n - i ) ! [ =  
( 2 n -  1 ) ( 2 n - 3 ) . - - 3 . 1 .  For example, in the case n = 2 one has 

{za ZzZ3Z4} = zlz2z3z4 + zlz3z2z4 + zlz4z2z3 (37) 

Formula (35) is called the Wick theorem (see, for example, ref. 5). Each 
term in the expansion of the right-hand side of (30) can be represented by 
a graph which is determined by the contractions in (35). We put 

m q ~ ( " C 2 )  = ~(~'1 '  ~2) ----" "1 ~2 (38a )  

q ~ (  = : (38b) "c2)=iD(~l,%) ~1 

As an example we consider {q(t') q(t") p(z)2 q(~)2}. One of the terms here 
is 

I I 

q(t')q(t")p(z) p ( r ) q ~ ( z )  = q ~ ( ' c )  q ~ ( ' c )  q~q( 'c )  

= iD(t', z) iD(t", ~) A(v, r) 

which correspond to the graph in Fig. 2. 
We shall apply these simple rules to calculate up to O(I/2) the 

cumulant for a model of a semiconductor. Introducing as the intensive 
variable the density of excited electrons x = X/O, where X =  1, 2 .... is the 
number of excited electrons, we find that the master equation takes here 
the form (4) (see ref. 2, Chapter VI, for a discussion of the model) with 
~Lf, = 0, s>~l, and 

a(,~ =- a,(x) = b + ( -  1) n ax 2 (39) 

where a and b are positive constants. The deterministic (macroscopic) 
equation ~( t )=  al(e(t)) has the solution 

[b'~ 1/2 c%+ (b/a) 1/2 tanh(ab) 1/2 ( t - t o )  
e(t) = ~a) (b/a) m + ao tanh(ab) m ( t -  to)' e(t0) = e0 (40) 
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The initial master equation has natural boundary conditions and for eo > 0 
one has e(t) = ~(~ = t - to) --+ # = (b/a) 1/2, ~ --+ o% which is a global attrac- 
tor. One has a~(/~)= -2(ab)i/2<O. The functional Zo is given by (17a) 
with 

(cosh p,,~ 2 ( (b/a)U2 + So tanh 

A(t, t') = D(t, t') F(t') + D(t', t) F(t) 

(41a) 

(41b) 

~ ( ! ) l / 2 [ S o + ( b / a ) ' / 2 t a n h p  
F(t) = k ~ + ~ o  tanh p 

l ( b  ) 1 So+(b/a) tanhp  
+ 5 a -  s2 (cosh p)2 [(b/a)U2 + So tanh p ] :  (b/a) 1/2 + s o tanh p 

+ 2  "o 3 - -  c~ a (cosh p)4 [(b/a)m + ~o tanh p]4 

-t- 5 a - - S  2 (coshp)4 [ ( b / a ) m + s o t a n h p ]  4 (41c) 

where p = (ab) m ( t -  to) and p' = (ab) '/2 ( t ' -  to). We put x(t) = s(t) + 
q(t) and the two-point cumulant will be 

( (x ( t ' ) x  (t"))) = ( x ( t ' ) x ( t ' ) ) -  ( x ( t ' ) ) ( x ( t " ) )=r l ( (q ( t ' )q ( t " ) ) )  (42) 

We have then to calculate 

((q(t') q(t") )) = (q(t') q(t") ) - (q(t') ) (q ( t ' )  ) 

= (~2(t', t") - (~l(t') (~l(t") 

822/'71/3-4-22 
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using (31). An important point here is that it is not necessary to make 
explicitly the subtraction ( 5 2 -  GIG1), since it can be easily checked that 
if in the expansion (31) for G2 we keep only the connected graphs (those 
which are not formed by two or more separated parts, such as the graph 
in Fig. 2), we obtain directly ((q(t') q(t"))). This is true for any cumulant 
of the process q(t). We want to calculate in our model up to O(t12). We put 

((q(t') q(t")>> = So(t', t") + ~/Sl(t' , t") + 0(r/2) (43) 

From (31) we obtain So(f, t " )=  q(t ' )q( t")=3(t ' ,  t"). On the other hand, 
we see from (32) that we need HI/~ and H~ 1), 

i p3 1 i H(p)=~..a3(c~(t)) --~a2,1(~(t)) p2q-~al ,2(~(t))  pq 2 (44a) 

4 i 1 
H o  ) _ 1 a4(e(t)) p + ~ a3,1(7(t)) p3q _ 4 az.2(e(t)) pZq2 (44b) i - 4 !  

with a.(x) given by (39) and a.,m(X) = dma.(x)/dx m. It is simple to see that 

{q(t') q(t") H(1~ } = 0 

and then from (30) and (32) we obtain 

Sa(t', t") = S]~)(t ', t") + S]2)(t ', t") (45a) 

= 0 dr {q(t') q(t") H~l)(r)} (45b) 

T 

S]2)(t ', t") = �89 [ dzl dr2 {q(t') q(t") H~~ H~~ (45c) 
o t  o 

where only connected graphs have to be considered in (45b) and (45c). 
One has 

an . l ( x )=( -1 )"2ax ,  an ,2(x)=(-1)n2a (46) 

and in S] ~/ only one term arises with the value 

S~l)(t ', t") = a [min(t',t") d~ D(t', z) D(t", z) 3(z, z) (47) 
~ t  0 

which corresponds to the graph of Fig. 2. For S~ 2) we obtain 
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S~2)(t ', t ' )=  2a 2 

+ 2 f dr1 dz2D(t', rx)D(zl ,  z2)A(rl ,  z2) A(t", z2) 

_[_ 1 f d~ 1 dT 2 D(t  t, T1 ) D(ttt, T2) A('Cl, "c2)2 l 

f dZl d~2 a3(~(Zl)) D(t', Zl) D(r l ,  z2) 2 D(t", T2) a 

1 21- f d"c1 dT 2 a2,x((X('ci)) D(I t, TI) a ( l  't, T1) D(TI, T2) A(T2, "c2) 

+ 2 f dzl dz2 a2,1(~(zl)) D(t', zx) D(t", "c2)D(z2, T1)A(z i ,  "r2) 

21- f d"Cl d,'c 2 a2,1(0~(T1) ) V( l  tt, T2) A(t t, "el) a("c2, T1)2 1 

+ (t' ,--, c')  (48)  

where (t'~--~ t") means that we have to add all the preceding terms after 
interchanging t' and t". In (48) all integrals are in [to, T], but the result 
is of course independent of T >  (t', t"), as can be checked by recalling that 
D(t, t') is proportional to O(t- t ' ) .  From (43) and (48) we obtain the 
cumulant  in the stationary state, taking the limit to ~ - ~ .  In this limit 
~(t) ---, ~ = (b/a) 1/2, D --* D st, and A --* A st, with 

DSt(t ', t ' )  = O(t -  t') e x p [ -  la~,l(~)l ( t -  t ' ) ]  (49a) 

a2(/~) 
ASt(/, t ' ) -  exp[--[a,,x(/~)[ ](t-- t ')[] (49b) 

2 lal, l(P)[ 

and a~, l (p)= -2(ab) m. We obtain 

((q(t) q(t '))) st 

= -~ exp[ -2(ab)  ~/2 I t - t ' l ]  

+ tl - g e x p [ - 2 ( a b )  ~/z I t -  t'] ] 

1 
+-~ (ab ) ~/2 I t -  t'] e x p [ -  2(ab ) m I t -  t ' l] 

+ ~ e x p [ - 4 ( a b )  ~/2 I t -  t'l ] (50) 
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APPENDIX  A 

We calculate here Zo[J, J* ]  given by (16b). The method is the same 
as used in ref. 3, Chapter IX, for the case in which the coefficients of pq and 
p2 are time independent. One has that Zo[J, J*]  =~ ~q ~p B[p, q] and 
the integration-by-parts lemma implies 

5 B , 6 B f ~q~P 6 - ~  [p q]=f  ~q~P ~-p-~ [ p , q ] = 0  (A1) 

This gives the following two equations: 

I8 ] 1 6Zo J(t) Zo[J , J*]  (A2) -~+a'l(o~(t)) i 8J*(t) 

8 ] 1 8Zo 6Zo 
-~ -a'l(a(t)) i6S(t) a2(~(t))b-~t ) J*(t) Zo[J,J* ] (A3) 

which have to be solved with the boundary conditions 

1 ~ Z  o 1 6Zo 
1- ~-(-f) t= to = 0, i 6 J ~ )  t= T = 0, ZoE0, 03 = 1 (A4) 

The solution of (A2) is 

1 fiZo - fTdt'J(t')D(t', t).ZoEJ, J*] (A5) 
i 6J*(t) to 

with D(t', t) given by (t7b). We replace this value in (A3) and solve this 
equation to obtain 

1 6Zo f r i f J ( t ) -  dt'D(t,t')J*(t,t').Zo[J,J*] 
o 

T 

+i~ dt'A(t, t')J(t').Zo[J,J* ] (A6) 
" t  o 

with A(t, t') given by (17c). Equations (A5) and (A6) together with 
Zo[0, 0] = 1 give then the form (17a). 

A P P E N D I X  B 

We consider now the case in which the original variable is a vector. 
Equation (3) will be of the form 

8 
r /~p (x ,  t l . . . ) =  ~ qS~(e-nr, e,, 1)COs(X,r)p(x, tl...) (B1) 

s > ~ 0  r 
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with x = (x~ ..... XM), d = (8~,..., 8u), 8, = 8/8X~, and r = ( r  I . . . . .  r~t), and 
summation over repeated indices must be from now on understood 
( F / z ( ~ #  ~ ~-~/z M -  1 r / ~ 8 / z ) "  Equation (4) becomes 

8 
q ~ p ( x ,  t l . . . ) =  ~ r/sse~(r/d, x)p(x,  t l-- ')  (B2) 

s ~ > O  

ze,(~0, x)= ~ (-~)~ n! 8 ~ . . .  8 .~  a (~)~t - - - ~ . ( x )  ( B 3 )  
n ~ > l  

a (~) (x~ = ~ ru~.., r~COs(X, r) (B4) U 1 �9 �9 -/.t n "~ / 
r 

The generating functional of correlation functions for deterministic initial 
conditions X(to)= a ~ will be 

Z[j, j*] = f~r ~ Q ~ P  

ft T ~ -- x exp i dt [/5 ~). _ H(P, Q) +j~Q~ + j . / 5  ] 
o 

x ~(Q(to) - a ~ (BS) 

where 

/~(p, Q)=_t ~ ~sz~(~O~i~p ' x ~ Q )  (B6) 
/7 s > ~ O  

and ?(0) (which we omit from now on) stands for prepoint discretization, 
which defines Z in (B5) as lira IN, N--, ~ ,  with 

fQ N + i  N + I  dP,,y ~r AQu, j 
IN= o [] dQ~,i [J - -~ -exp ie  2 -P~,,J 

t~,0 = % i = 1  j = l  j = l  /~ 
u = 1 , . . . , M  v = 1 , . . . , M  

B(Pj, Qj- i) + Ju(tj) Q~,j + j*(tj) P~, Jl (B7) 

with the obvious generalization of the definitions in the text which we shall 
use in this Appendix. Proceeding as in Section 2, we have that H l and H 2 
in (10) are now 

H~ = H  (~ H2= ~ qSH(S+l) 
s ~ > O  

(-i)-p 
H(~')(P, Q ) =  i E n! ~,1 ""Pu,a~;)...~,,(Q) 

(B8) 
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Putting J/A = x/-~ J/A, J* = x ~  J*, and Z[J, a*] = Z[j, j*], we have 

Z[ J , J* ]=exp  f dtJ/A(t)c~.(t) -Z[J ,J*]  
tO 

with 

[1 6 l ~ ] . Z o [ j , j .  ] (B9) 
2[a, J*] =K 76J* ' i  

Zo[J, J*] = I @q~pexpif,[dt{p/A[(t/A-Ooa/A(a(t))qo] 

i + ~ a/Av(a(t)) p/Ap~ + J/Aq~ + J*P/A}" 6(q(to)) (B10) 

(N/~) n+m-2 

t n +  >13 n ! m !  

~n+mHx(P'-Q)~Qv~ ,=o 
x OPu~ ~ . - 7 ~  q/Al"'" qu~ P~,"" Pv. 

Q = a(t) 

+i  ~ q~ ~ (--ix//-~)n (~+n +x/-~q(t))]} n! p/A ...pu a/A, ./A.(~(t) 
s>~O n>~l 

(Bll) 

=a  (~ and a(t) is the solution of the deterministic where a/A, .../An - -  -" Ul "' '/An 

equations 
o (Bt2) ~/A(t) = a/A(a(t)), ~/A(to) = ~/A 

Formulas (B9)-(B11) allow us to calculate the correlation functions 

a m . - - /Am(T1,  " ' ' ,  T m ) :  < X / A I ( " C l ) ' "  "X/Am(Tm)> 

= f i  ~ 6_ ,Z[J , J* ] ]  (B13) 
l = l  i 6J~t(zl) J = a * = 0  

as formal series in powers of q, since Zo is independent of r/. We calculate 
now Zo using the same method as in Appendix A. Putting B/Ap(q)= 
Opa/A(q), we have instead of (A2) and (A3) the equations 

I ~ I 1 6Z~ 
-~ 6~ + B/Ap(a(t)) i 6J*(t----) - J/A(t) Zo (B14) 

[ ~  ]1  6Zo 6Zo J*(t) Zo (B15) 
6~-- B/A,(a(t)) i 6JR(t) a/Av 6J*(t) 
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which we have to solve with the boundary conditions 

I 6Zo =0, 1 5Zo 
)- 5J--~) t=t0 i 6J*(t) ,= r = 0, Zo[0. 0] = 1 (B16) 

Let D(pl~)(t) and D(p~(t) satisfy 

[ ~  b , - B ~ , ( a ( t ) ) J  D:~(t) = 0 

(BI7) 

I ~ 6 ~ + B P ~ ( a ( t ) ) l  (2) _ Dp~( t ) -0  

with boundary conditions (s) Dp~( t=0)  = 6p~, j =  1, 2. We notice that these 
functions depend on t through a(t). From (B14) we obtain 

1 6Zo f r dt' J~(t')S~p(t', t). Zo[J  , J * ]  (BlS) 
i 6J*(t) o 

S~p(t, t )= O(t ' -  t) (2) (2) ' Dp~ (t) Dou - l(t') (B19) 

where D (j)-~ stands for the inverse matrix of D (j). From (B15) we obtain 
[a.v(-c) = a,v(a(z)) ] 

16Z~ I f~ i 6Je(t) -- o dt' Sp~(t, t ')J*(t ')  

f T ] 
+ i .  dt' ziP'U, t') J,(t') . Zo (B20) 

"t 0 

APe(t. t') = Dpo(t)(l) O(t--t') dt" z)~(x)- a tr . . . . . . . . . .  )a~At ) Dvct~(2)(tn ) 
0 

ftt 1 t, rr i-)(2)[tn]~ + O ( t ' - t )  o d t " D ~  ( t ) ~ ( t ) ~ , .  j j D ~  ) '(t ') (S21) 

In the derivation of these formulas we have used the matrix relation 
D(1)- I=D(2)r ,  D ( z ) - I = D  (1)r where the superscript T stands for the 
transposed matrix [these relations are derived from (B]7)].  One can check 
also that APT(t, t ' )= A~P(t ', t). From (B19) and (B20) we obtain 

Zo[J ,  J * ]  = exp - i  dtl dt2 J.(/1) S~p(ta, t2) J*(t2) 
0 

2 dtl dt2 J.( t l )  A~(t l ,  t2) J~(t2) 
o 

(B22) 
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These formulas are valid in general and describe fluctuations around the 
solution ~t(t) of the deterministic dynamical system. If we want to study 
the stationary fluctuations we have again to take the limit to ~ -oo  in our 
formulas. Since the whole expansion depends on a( t ;~  ~ t0)=~t(z, a~ 
z = t - t o ,  we shall fall in the attractor of the dynamical system 
2~ = au(x(t)), # = 1, 2 ..... M [see (B12)], to whose basin of attraction Gt ~ 
belongs. Since we are now in several dimensions ( M >  1), the result will 
depend on the nature of the attractor and each case must be studied 
separately. The case of a strange attractor would be of special interest. We 
can give simple formulas when the attractor is a locally stable equilibrium 
point p = (fl~,..., fl~t). We can make a translation to locate this point at the 
origin and furthermore we assume that we can diagonalize the linear part 
there; then the dynamical system will be of the form 

0~ = ~ ) q ~  + b,(q) (B23) 

with 21~ ) < 0, since the origin is an attractor. One has now that 

O(pl)(t) = 6o~e;.,~,' ' O(o2)(t) = 6p~e-~,o, ' 

and consequently Zo TM is given by 

Z o [ J , J * ] = e x p  - i  d t l d t2J~ , ( t l )  s t a t  S~p (tl - t2) J*(t2) 

- - -~ f  d t l d t 2 J . ( t l ) A ~ s t a t ( t l - t 2 ) J v ( t 2 )  (B24) 
- -00  

s t a t  t S ~p ( ) = 6~pO(t) e ~ t  (B25) 

.~ au~(O) z~ stat(t- t') = [ O( t - t') e ;'(~(t- t') 

+ O ( t -  t') e ~(~(c- t)] (B26) 

On the other hand, 

zstat [-J' J* ] = Kstat [+ 60J*' l~J]  "z~ [J' J* ] i  (B27) 

where K~t"t[p, q] is given by (Bl l )  by putting there a ( t )=0 .  The station- 
ary correlation functions are then given by (B13) with Z replaced by Z ~t"t. 
The situation in which one cannot linearize as in (B23) due to the 
appearance of complex eigenvalues or Jordan blocks can be treated in a 
similar way with some slight changes. 
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